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The principal objective of this paper is to study some unsteady characteristics of
an interaction between an incident oblique shock wave impinging on a laminar
boundary layer developing on a flat plate. More precisely, this paper shows that some
unsteadiness, in particular the low-frequency unsteadiness, originates in a supercritical
Hopf bifurcation related to the dynamics of the separated boundary layer. Various
direct numerical simulations were carried out of a shock-wave/laminar-boundary-
layer interaction (SWBLI). Three-dimensional unsteady Navier–Stokes equations are
numerically solved with an implicit dual time stepping for the temporal algorithm
and high-order AUSMPW+ scheme for the spatial discretization. A parametric study
on the oblique shock-wave angle has been performed to characterize the unsteady
behaviour onset. These numerical simulations have shown that starting from the
incident shock angle and the spanwise extension, the flow becomes three-dimensional
and unsteady. A linearized global stability analysis is carried out in order to specify
and to find some characteristics observed in the direct numerical simulation. This
stability analysis permits us to show that the physical origin generating the three-
dimensional characters of the flow results from the existence of a three-dimensional
stationary global instability.

1. Introduction
Effective design of supersonic air vehicles requires accurate simulation methods

for predicting aerothermodynamic loads (i.e. mean and fluctuating surface pressure,
skin friction and heat transfer). Shock wave/turbulent-boundary-layer interaction
(SWTBLI) is common in high-speed flight, and can significantly affect the aero-
thermodynamic loads.

When a large adverse pressure gradient exists in the inviscid pressure distribution,
the viscous effects become important. The interaction between the oncoming
boundary layer and the adverse pressure gradient drastically modifies the inviscid
pressure distribution and the flow field. Multiple shocks, flow separation, transition
to turbulence, unsteadiness, and three-dimensionality appear near the interaction
region. This phenomenon appears in transonic flows over airfoils, supersonic flows
over compression corners, and flows over steps. Liepmann (1946) and Ackeret,
Feldmann & Rott (1947) were the first to investigate experimentally the mutual
influences of the compression shocks and the boundary layers at transonic and
low supersonic Mach numbers in laminar and turbulent flow regimes. Since then,
several experiments, analyses, and computations have been performed to investigate
the shock/boundary-layer interactions in detail. Most of the experiments measured
or computed aerodynamic quantities such as pressure distribution, skin friction,
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and heat-transfer rates. The flow separates in front of the shock with a gradual
increase of pressure starting upstream of the separation point. This gradual increase
in pressure ends with a sharp increase near the shock, and the flow becomes turbulent
behind the shock. In both cases, the boundary-layer thickness increases considerably:
about 10 times in laminar flows and about four times in turbulent flows. Chapman,
Kuehn & Larson (1958) conducted an extensive investigation on flow separation with
steps, bases, compression corners and curved surfaces at different Mach numbers,
ranging from 0.4 to 3.6, and at different Reynolds numbers. They observed that the
pressure distribution in separated flows depends on the location of the transition
point relative to the reattachment and separation points. In laminar separations, the
pressure initially rises smoothly, reaches a plateau and, depending on the downstream
condition, rises to the final pressure smoothly. In transitional separated flows where
the flow starts to become turbulent between the separation and reattachment points,
the pressure initially rises smoothly, as in laminar flows, and then increases sharply
near the transition region. The pressure distribution also becomes unsteady in this
case. In turbulent separated flows, the pressure rise is steep from the start to the
end. They also observed that the mixing layer above the separation bubble is stable
in supersonic flows, and the stability increases with increasing Mach numbers. The
mechanism for the upstream propagation of the disturbances in a boundary layer
and in a supersonic free stream from the adverse pressure-gradient region was
first explained by Lighthill (1950, 1953a , b) using self-induced separation theory
and later by Stewartson & Williams (1969) using asymptotic triple-deck theory.
The mechanism is that the separated region near the shock produces an adverse
pressure gradient in the outer part of the boundary layer, and this induces further
growth of the separated region until they come to an equilibrium state further
upstream of the original discontinuity. This theory predicts the initial pressure rise
close to the separation point, and the agreement between the calculated and the
experimental pressure distribution close to the separation point is excellent. For a
more comprehensive discussion of shock-boundary layer interaction phenomena of
such base flows, see Délery & Marvin (1986), Smits & Dussauge (1996) and Dolling
(2001). One of the current problems of SWBLI is to understand the various physical
mechanisms responsible for the unsteady character of this interaction. Whether the
flow is laminar, transitional or turbulent, this unsteadiness is likely to strongly
modify the various physical characteristics of the SWBLI previously evoked. In
the following, some physical mechanisms responsible for SWBLI unsteadiness will be
highlighted.

Instability studies of supersonic flows with or without SWBLI have been carried
out principally in the transition context. Transition from a laminar to a turbulent
flow comprises high aerodynamic loads. It has been a major area of concern over the
past few decades and much work has been carried out in order to understand and
possibly influence transition. However, although progress has been made, the physics
are far from being understood. Much less work has been done on compressible
flows, such as hypersonic flows, than on incompressible flows. For the first phase
of the transition process, quantitative predictions can be made with compressible
linear stability theory, which was formulated, for example, by Mack (1969) and Malik
(1990). Kosinov, Maslov & Shevelkov (1990) and Eissler & Bestek (1996) investigated
transition to turbulence of flat-plate boundary layers for a large range of Mach
numbers, For hypersonic Mach numbers, few studies were carried out in particular
with SWBLI (Bedarev et al. 2002; Pagella, Rist & Wagner 2002; Balakumar, Zhao &
Atkins 2005).
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Figure 1. Schematic representation of the shock-wave/boundary-layer interaction.

For SWBLI, the only transition mechanisms which were studied, to our knowledge,
concern the existence of local instabilities and generally only convective ones. Rare
are the cases where the analysis relates to the presence of three-dimensional global
instabilities with large transverse wavelengths. These global instabilities, when they
exist, can be responsible for certain physical mechanisms producing an intrinsic
three-dimensionality of the flow as well as a low-frequency unsteadiness.

The objective of the work presented in this paper is twofold, it is on the one hand
to show that SWBLI can become unsteady independently of the laminar or turbulent
nature of the flow and on the other hand, to show that the physical mechanisms
responsible for this unsteadiness originate in a three-dimensional global instability.

A direct numerical simulation was carried out. The final state reached by simulation
is described in a precise way in order to characterize its various space–time charac-
teristics (§ 2). A study of the computational transients was undertaken in order to
analyse the various processes leading to this final state. In addition, a study of global
linear stability was carried out and compared (§ 3) with the results obtained by the nu-
merical simulation. The last section is dedicated to the conclusions and prospects (§ 4).

2. Numerical simulations
2.1. Physical configurations

In the following, only shock-wave/laminar-boundary-layer interaction on a flate
plate has been investigated. The test case considered has been experimentally and
numerically studied by Degrez, Boccadoro & Wendt (1987). The free-stream inflow
Mach number is 2.15 for the numerical simulation. The Reynolds number based on
the distance Xsh between the plate leading edge and the shock impingement point is
105. The shock angle with respect to the horizontal is θ = 30.8◦, which corresponds
to a shock generator angle of 3.75◦. This dataset takes into account confinement,
three-dimensional effects and measurement approximations; it is not strictly the same
as the experimental free-stream conditions (see Degrez et al. 1987 for more details).
At this incidence angle, Degrez et al. (1987) indicate that the flow remains stationary
and two-dimensional upstream, downstream and in the interaction. Furthermore, it
remains laminar at least until the end of the measurement zone. Figure 1 shows a
sketch of the shock-wave/laminar-boundary-layer interaction and table 1 gives the
different physical parameters.
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Parameter Value

Free-stream Mach number M∞ = 2.15
Interaction length Xsh = 8 × 10−2 m
Free-stream Reynolds number Re= 105

Incident shock angle θ = [30.8◦; 33◦]
Spanwise length Lz = [0.1; 3]
Prandtl number Pr = 0.72
Ratio of specific heats γ = 1.4

Table 1. Flow parameters for the SWBLI.

To demonstrate that the low-frequency behaviour observed in some SWBLI con-
figurations can be linked to the intrinsic dynamics of the detached zone induced
by the interaction, independently of the turbulent boundary-layer characteristics,
the evolution of an incident shock wave impinging on a laminar boundary layer
developing over a flat plate is studied when the incident shock angle is gradually
increased. The free-stream inflow Mach number and the global Reynolds number
remain unchanged. The evolution of the SWBLI when the incident shock angle
increases is a complex problem. Indeed, for a particular value of the angle θ , the flow
becomes transitional in the interaction zone. This transitional state will probably
modify substantially the topology and the dynamics of the interaction zone. In
addition, no unsteady disturbance, of convective instability type, is introduced at
the upstream end of the computational domain in order not to start possible
instabilities of a convective nature which could mask and/or modify the existence
of a global instability. Three-dimensional numerical simulations will be carried out
without taking into account the transitional character of SWBLI. Considering these
assumptions, these present computations are meant to show that an SWBLI can
become unsteady without taking into account the turbulent character of the flow.
In this scenario, the unsteadiness onset is directly linked to the intrinsic dynamics of
the detached zone and quickly leads toward a three-dimensional and unsteady flow.

2.2. Governing equations

The equations solved are the three-dimensional unsteady compressible Navier–Stokes
(N-S) equations in conservation form:

∂

∂t
Qi +

∂

∂xj

(
F

(c)
ji − F

(v)
ji

)
= 0, (2.1)

Here

Qi =

⎛⎜⎜⎜⎝
ρ

ρE

ρu

ρv

ρw

⎞⎟⎟⎟⎠ ,
[
F

(c)
ji

]
=

⎛⎜⎜⎜⎝
ρuj

(ρE + p) uj

ρuuj + δ1jp

ρvuj + δ2jp

ρwuj + δ3jp

⎞⎟⎟⎟⎠ ,
[
F

(v)
ji

]
=

⎛⎜⎜⎜⎝
0

uτ1j + vτ2j + wτ3j − qj

τ1j

τ2j

τ3j

⎞⎟⎟⎟⎠. (2.2)

Here (x, y, z) are the Cartesian coordinates, (u, v, w) are the velocity components, ρ

is the density, and p is the pressure. E is the total energy given by:

E = e + (u2 + v2 + w2)/2, e = cvT , p = ρrT . (2.3)
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Here e is the internal energy, and T is the temperature. The shear stress and the heat
flux are given by

τij = µ

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij

∂uk

∂xk

)
, qj = −κ

∂T

∂xj

. (2.4)

The viscosity µ is computed using Sutherland’s law, and the coefficient of conductivity
κ is given in terms of the Prandtl number Pr. The variables ρ, p, T and velocity
are non-dimensionalized by their corresponding reference variables ρ∞, p∞, T∞ and
U∞, respectively. The reference value for length is Xsh, the distance between the plate
leading edge and the shock impingement.

2.3. Numerical method

The governing equations are solved using a fifth-order-accurate AUSMPW+ scheme
for space discretization initially developed by Liou & Edwards (1998). Kim,
Kim & Rho (2001a , b) describe in detail the solution method (the AUSMPW+
scheme) implemented in our computation. These methods are suitable in flows with
discontinuities or high-gradient regions. These schemes solve the governing equations
discretely in a uniform structured computational domain in which flow properties
are known pointwise at the grid nodes. They approximate the spatial derivatives
in a given direction to a higher order at the nodes, using the neighbouring nodal
values in that direction, and they integrate the resulting equations in time to find the
point values as a function of time. Because the spatial derivatives are independent
of the coordinate directions, the method can easily add multidimensions. It is well
known that approximating a discontinuous function by a higher-order (two or more)
polynomial generally introduces oscillatory behaviour near the discontinuity, and this
oscillation increases with the order of the approximation. High accuracy of the inviscid
numerical fluxes is ensured through the use of a fifth-order MUSCL reconstruction of
the primitive variables vector (ρ, u, v, w, p)t . Usually, the reconstruction process also
involves the use of a slope limiter in order to avoid the numerical oscillations onset
in the solution. The main effect of this limiting process is to bring down the accuracy
of the scheme to first order in flow regions where it is active: in turn, this reduction
of accuracy can substantially alter the flow prediction, so that unsteady phenomena
may no longer spontaneously appear. In the present study, the use of such a limiter
was not found to be necessary because enough natural dissipation is provided by the
viscous terms to prevent the occurrence of numerical oscillations. For more details on
the performances of this present solver with or without limiting process, see Alfano
et al. (2004).

A time-accurate approximate solution of system (2.1) is obtained using the following
implicit second-order linear multi-step method:

T(Un+1, Un, Un−1) + R(Un+1) = 0, (2.5)

where R gathers the space-discretization operators described in the previous section
and T is a three-step approximation of Ut at time level (n + 1) defined by:

T(Un+1, Un, Un−1) = (1 + φ)
(Un+1 − Un)

	t
−φ

(Un − Un−1)

	t
= (U)n+1+O(	tp). (2.6)

The choice of φ = 1/2 in (2.6) allows us to reach second-order accuracy in time (p = 2).
Although the order in time is not very high, the studied global instabilities generally
have low frequencies and the time step 	t is selected small, around 	t ∼ 10−5 s,
which is largely sufficient to compute required dynamics. In order to solve efficiently



90 J.-Ch. Robinet

Parameter Value

(Nx, Ny, Nz) (600, 180, 60)

(	x, (	y)wall , 	z) (3 × 10−3, 7.8 × 10−5, 1.66 × 10−2)

Geometrical ratio q 1.02

xin, xsponge, xout 0.2, 2, 2.3

y ∈ [0, ymax] y ∈ [0; 0.94]

z ∈ [0, Lz] z ∈ [0; 1]

Dual CFL 50

Physical CFL 6

Time step 6.82 × 10−6

Table 2. Computational parameters for the SWBLI.

the implicit system R
(Un+1) = 0 where R
(Un+1) = T(Un+1, Un, Un−1) + R(Un+1), we
make use of a dual time technique, well known for incompressible flow calculations
(Peyret & Taylor 1983) and made popular by Jameson (1991) for computing
compressible flows. Actually, Un+1 is obtained as a steady solution of an evolution
problem with respect to a dual or fictitious time τ :

Uτ + R
 (U) = 0. (2.7)

Solving (2.7) instead of (2.5) allows the use of much larger physical time steps;
however, in the meantime, it also requires converging to a pseudosteady state at each
physical time step. Therefore, the dual time approach is of interest only if system (2.7)
can be efficiently solved. In the present study, a matrix-free point-relaxation method
allows us to obtain a steady solution of system (2.7) after a few sub-iterations on the
dual time (here around 200); moreover, this implicit treatment induces a low memory
storage requirement which makes the treatment of a large number of grid points
accessible with moderate computer configurations (see for instance Luo, Baum &
Lhner (2001) for more details on this implicit technique). For more details on the
numerical procedure used here as well as different test cases validating the various
numerical choices, see Boin et al. (2006).

2.4. Computational domain and boundary conditions

The numerical method described in the previous section is applied to the computation
of an oblique shock wave/laminar boundary layer on a flat plate. The coordinates
are non-dimensionalized by the interaction length Xsh. The geometry of the three-
dimensional domain is D = [0.2; 2.3] × [0; 0.94] × [0, Lz] with 600 × 180 × 60 points.
The grid is uniform in the streamwise and spanwise directions and geometrical
in the normal direction. The transverse direction Lz lies between 0.1 and 3 with
a number of planes ranging between 40 and 60 planes. The three-dimensional
dimensionless mesh spacing is equal to 	x = 3 × 10−3, 	y =7.8 × 10−5 at the wall and
from 	z = 1.05 × 10−3 to 	z = 1.66 × 10−2. All the numerical parameters necessary to
the numerical simulation are given in table 2. Figure 2 shows the dimensions of the
geometry and the computational domain.

The steady two-dimensional Navier–Stokes solution is imposed at the inflow
(x =0.2). This latter is repeated in the spanwise direction. The inflow boundary
condition is thus homogeneous according to z. At the outflow and at the upper
boundary, high-order extrapolations are used as boundary conditions for the
conservative variables. The flat plate is assumed to be an adiabatic wall where
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Figure 2. Computational domain and boundary conditions.

the velocity vector is zero (no-slip condition); pressure is also extrapolated from the
values just above the plate. A sponge zone is imposed from x = 2 to x = 2.3. At
the wall, the simulation uses viscous conditions for the velocities and a constant
temperature condition, and it computes density from the continuity equation. In
the spanwise direction, the solution can be characterized as a neutral oscillation,
which is periodic at its boundaries. In this case, for computational cost reasons,
we preferred to use a spectral scheme based on a Fourier decomposition. The
Fourier basis is a natural choice for expanding the function with periodic boundary
conditions as is the case in the spanwise direction in our problem. For more details
on the numerical implementation, see Canuto et al. (1987) and Boyd (1999). These
boundary conditions are classically used in direct numerical simulation, but will have
important consequences on the results analysed in this study. Indeed, in the case
of a flow that naturally produces three-dimensional structures, the dimension Lz

given to the domain in the z-direction will force the wavelength of the spanwise
structures. Therefore, the spanwise dimension should ideally be as large as possible to
let three-dimensional instabilities appear spontaneously. For traditional DNS studies
of convective instabilities, Lz is fixed by the user and corresponds to the most
unstable wavelength, which appears first and is representative of the real configuration
(without lateral boundaries). This wavelength is generally short compared to the
other characteristic dimensions of the problem and is given by a linear stability
calculation. The present SWBLI study is focused on low-frequency phenomena with
corresponding large wavelengths; moreover, there is no way to determine in a reliable
way the wavelength of the strongest instability in that case. It was therefore decided
to consider Lz as a parameter rather than a fixed input data point; for all the three-
dimensional computations, a parametric study on Lz is required. Two types of initial
condition are used in order to study the dependence of the solution with respect to the
latter. The first condition consists in initializing the computation by a two-dimensional
solution in the z-direction. The second condition is to impose the incoming supersonic
flow V∞ = (ρ∞, u∞, v∞, w∞, p∞)t on the lower part of the domain, y ∈ [0; ys], ∀x,
while another (supersonic) state Vdown is imposed on the upper part of the domain,
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Figure 3. Flow organization according to the incident shock angle and the transverse size of
the computation domain.

y ∈ [yi; ymax, ∀x. This state is computed so as to satisfy the Rankine–Hugoniot rela-
tions across a shock with the upstream state V∞ and given shockwave angle θ .

These computations use the dual CFL number of 50 and the convergence for the
dual iterations is obtained after the residual decreases by six orders. The dimensional
physical time step is 	t = 6.82 × 10−6 s, which gives a physical CFL number close
to 6.

2.5. DNS results

2.5.1. General results

Many computations were carried out for various values of the incident shock angle
θ and spanwise length Lz. In agreement with the experimental results of Degrez, for
θ = 30.8◦ and all Lz, the solution obtained is two-dimensional and steady (see Boin
et al. 2006). When the incident shock angle is greater, for the same flow conditions
(Re, M), the flow is destabilized towards a complex space–time dynamical state. When
31.7◦ <θ < 32.8◦, the two-dimensional flow is conditionally stable with respect to the
spanwise length Lz. Indeed, there are two critical spanwise lengths, Lzc1

(θ) and Lzc2
(θ),

where the flow bifurcates. If Lzc1
(θ) < Lz < Lzc2

(θ), the SWBLI bifurcates towards a
three-dimensional and stationary asymptotic state. If Lz � Lzc2

(θ), the asymptotic
state corresponds to a three-dimensional and unsteady flow. When θ > 32.7◦, a
three-dimensional and unsteady flow is directly reached. Figure 3 synthesizes the
results obtained. As shown in figure 4, when the incident shock angle increases,
the SWBLI becomes gradually three-dimensional. This three-dimensionality, for all
the configurations studied in this paper, remains confined in the interaction zone and
more precisely in the separated zone. This three-dimensionality is characterized by the
appearance of a secondary recirculation within the primary recirculation and located
in the downstream part of the bubble and close to the wall. This creation of secondary
recirculation is immediately followed by the creation of a spanwise component of the
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Figure 4. Iso-lines of longitudinal velocity U (x, y) and streamlines for Lz = 0.8.
(a) θ = 30.8◦, (b) θ = 31.7◦, (c) θ = 32.0◦ and (d) θ =32.5◦.

velocity, which is initially localized in the vicinity of the core of the recirculations.
This three-dimensionality of the flow remains confined in the recirculation core when
the incident shock angle lies in the interval 31.7◦ <θ < 32.8◦. For higher values
of θ , the separated zone quickly becomes completely three-dimensional and is not
limited only to the core of the recirculation zones. In this case the asymptotic
solution is always unsteady. In § 3, it will be shown that this first bifurcation (two-
dimensional-stationary/three-dimensional-stationary) can be comprehended by an
analysis of global linear stability of the mean flow. Boin et al. (2006) gives details of
the influence of the transverse length.

2.5.2. Asymptotic state

In this section, only the final state will be considered. The physical mechanisms
generating this asymptotic state will be studied in the following section. In the
preceding section, we have shown that the asymptotic state is a three-dimensional
and unsteady state if Lz � Lzc2

(θ) for 31.7◦ <θ < 33◦ and ∀Lz for θ > 33◦. In order to
characterize this bifurcation, an amplitude parameter is defined as Amp = max(w(t)) −
min(w(t)), where max(w(t)) and min(w(t)) are the maximum and the minimum of
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the spanwise velocity component, w(t), respectively. Figure 5 shows the amplitude of
the oscillations of w in a particular point in the SWBLI for the established flow and
for Lz = 0.8. The characteristics of a supercritical Hopf bifurcation are observed. In
order to extract the spectral contents from the dynamics of the SWBLI, fast Fourier
transforms (FFTs) taken in particular points are carried out. Figure 6 shows such
FFT results. The fundamental frequency, f0, is close to 700 Hz and this frequency
is present in all part of the flow except for the upstream zone of the incident shock
wave. The harmonics, nf0, of f0 are also in evidence. Inside the bubble (figure 6d),
a sub-harmonic frequency (350 Hz) and a broadband frequency around 3000 Hz are
also observed. This last characteristic is purely local and observable only inside the
bubble. The frequency f0 is related to a breathing of the bubble which is connected
to three-dimensional movement with important spanwise components.

2.5.3. Transient states

When the incident shock angle and the spanwise length are θ = 32◦ and Lz = 0.8,
respectively, the flow is three-dimensional and unsteady. However, the onset of the
unsteadiness is not a direct scenario. Figure 7 shows the time evolution of the physical
residual based on the conservative ρw variable (the CPU time figures in the second
x-axis). The unsteady state is reached after several characteristic stages which can
be connected with different instabilities. Three-dimensional views are presented in
Figure 8 for different moments (from A to F). During the first stage (from A to B)
from t = 0 to t = 16 ms, the flow remains two-dimensional and stationary. State A
corresponds to the initial state of the computation which is not a solution of the three-
dimensional equations. State B is a solution to the three-dimensional equations and it
corresponds to two-dimensional flow which is very close to the solution obtained by
two-dimensional Navier–Stokes equations. After this state, a first bifurcation appears
in the residual evolution. A three-dimensional instability is observed with transverse
wavelength close to 0.8 (from B to C). The three-dimensional character occurs also



Bifurcations in shock-wave/laminar-boundary-layer interaction 95

0 1000 2000 3000 4000 5000

10–10

10–12

10–14

10–16

10–18

P
S

D
 p

er
 H

z

10–4

10–6

10–8

10–10

10–12

10–6

10–5

10–10

10–15

10–7

10–8

10–9

10–10

P
S

D
 p

er
 H

z
(a) (c)

(d )
(b)

0 1000 2000 3000 4000 5000

f (Hz)

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

f (Hz)

Figure 6. Pressure spectra density for different points in the flow. (a) (x0, y0, z0) =
(0.8053, 0.6, 0.4), (b) (0.8053, 0.28, 0.4), (c) (0.8053, 0.18, 0.4) and (d) (0.8053, 0.042, 0.4) for
θ = 32.5◦ and Lz =0.8.

0

0

0

20

200

40

400

L
og

 (
re

si
du

al
)

60

600

80

F

tphy (ms)

tcpu (h)
800

–1

–2

–3

–4

–5

B

C D

A

E

Figure 7. Residual time evolution and CPU time on a 2.4 GHz Pentium processor,
Lz = 0.8, θ = 32◦.

inside the recirculation zone with the existence of two counter-rotating vortex tubes
in which some fluid from the wall is transported to the downstream shear layer. From
t = 35 ms, a second instability appears, but with a transverse wavelength close to 0.4
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Figure 8. Three-dimensional views inside the bubble at different moments: (a) near B stage,
(b) in (B–C) stages, (c) and (d) in (C–D) stage. Lz = 0.8, θ =32◦.

(from C to D). At this time, two instabilities are simultaneously present with different
wavelengths, 0.4 and 0.8. From t = 44 ms, the instability with the shortest wavelength
disappears (from D to E). The residual decreases then by two orders up to t = 58 ms
when a Hopf bifurcation (characterized in the previous section) leads the flow toward
an unsteady state (F).

Thereafter, only stage (B–C) is studied. Figure 9 presents, at a given point
(x0, y0, z0) = (1.1, 2 × 10−2, 0.4) the time flow evolution of the spanwise velocity
component in log scale. This run has been initialized by a two-dimensional solution.
After a short transient state (before point B), the amplitude of the spanwise velocity
component increases exponentially (linear evolution). When this amplitude becomes
finite, a nonlinear saturation takes place (point C). From points C to E, the spanwise
velocity amplitude remains constant. When t > 60ms, the Hopf bifurcation, previously
described, appears. This characteristic is observed in all flow cases. The linear
amplification rate observed in stage (B–C) is similar at any point of the flow. These
results suggest the existence of a global instability mechanism. In the next section,
this characteristic will be demonstrated.

3. Compressible biglobal linear stability theory
3.1. Theoretical basics

The analysis of flow stability is based on the compressible equations of motion, (2.1).
Central to work on linear flow instability is the concept of decomposition of any
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Figure 9. Time evolution of |w| in logarithmic scale, Lz = 0.8, θ = 32◦. Continuous line,
numerical simulation; dashed line, linear amplification rate.

flow quantity into an O(1) steady or time-periodic laminar basic flow upon which
small-amplitude three-dimensional disturbances are permitted to develop. The most
general framework in which a linear instability analysis can be performed is one in
which three inhomogeneous spatial directions are resolved and time-periodic small-
amplitude disturbances, inhomogeneous in all three directions, are superimposed
upon the underlying steady or time-periodic O(1) basic state. The related three-
dimensional global triglobal instability ansatz yields a three-dimensional eigenvalue
problem in which all three spatial directions must be resolved simultaneously in a
coupled manner. Though this most general ansatz is consistent with the separability
in the governing equations of time on the one hand and the three spatial directions on
the other, the size of the resulting eigenvalue problem is such that currently available
computing hardware and algorithms permit its solution only in a very limited range
of Reynolds numbers, of Re ∼ O(102).

In order to proceed, the basic state is assumed to be independent of one spatial
coordinate, z, an assumption in line with the two-dimensional cavity geometry. Flow
quantities are then decomposed according to

q(x, y, z, t) = Q(x, y) + ε q̃(x, y, z, t) (3.1)

with Q = (U, V , W, P , T )T and q̃ = (ũ, ṽ, w̃, p̃, T̃ )T representing the steady two-
dimensional basic flow and the unsteady three-dimensional infinitesimal perturbations,
respectively, the latter being inhomogeneous in x and y and periodic in z. Note also
that, unlike the incompressible case, pressure is a predictive variable in, rather than
a constraint of, the equations of motion. On substituting (3.1) into the governing
equations (2.1), taking ε � 1 and linearizing about Q, we may write

q̃(x, y, z, t) = q̂(x, y) ei Θ2D + c.c. (3.2)

with q̂ = (û, v̂, ŵ, p̂, T̂ )T representing the vector of two-dimensional complex
amplitude functions of the infinitesimal three-dimensional perturbations, a complex
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eigenvalue and

Θ2D = βz − ωt, (3.3)

a complex phase function. ‘c.c.’ represents the complex conjugate. The linear
disturbance equations of biglobal stability analysis are obtained at O(ε) by substituting
the decomposition (3.1)–(3.3) into the equations of motion, subtracting out the O(1)
base-flow terms and neglecting terms at O(ε2). In the present temporal framework, β is
taken to be a real wavenumber parameter describing an eigenmode in the z-direction,
while the complex eigenvalue ω, and the associated eigenvectors q̂ are sought. The
real part of the eigenvalue, Re(ω), is related to the frequency of the global eigenmode
while the imaginary part is its growth/damping rate; a positive value of Im(ω)
indicates exponential growth of the instability mode whereas Im(ω) < 0 denotes decay
of q̃ in time. The system for the determination of the eigenvalue and the associated
eigenfunctions q̂ in its most general form can be written as the complex non-symmetric
generalized eigenvalue problem

Lq̂ = ωRq̂ (3.4a)

+ boundary conditions on ∂D, (3.4b)

or, more explicitly,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

JL(c)
û JL(c)

v̂ JL(c)
ŵ L(Gc)

p̂ JL(c)

T̂

L(x)
û L(x)

v̂ L(x)
ŵ IL(x)

p̂ L(x)

T̂

L(y)
û L(y)

v̂ L(y)
ŵ IL(y)

p̂ L(y)

T̂

L(z)
û L(z)

v̂ L(z)
ŵ IL(z)

p̂ L(z)

T̂

L(e)
û L(e)

v̂ L(e)
ŵ IL(e)

p̂ L(e)

T̂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

û

v̂

ŵ

p̂

T̂

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= ω

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 R(Gc)
p̂ JR(c)

T̂

R(x)
û 0 0 0 0

0 R(y)
v̂ 0 0 0

0 0 R(z)
ŵ 0 0

0 0 0 IR(e)
p̂ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

û

v̂

ŵ

p̂

T̂

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (3.5)

where the operator L of the linear two-dimensional eigenvalue problem (3.4a) has
the form

L = M1

∂2

∂x2
+ M2

∂2

∂y2
+ M3

∂2

∂x∂y
+ M4

∂

∂x
+ M5

∂

∂y
+ M6. (3.6)

Details of the operators are presented in the Appendix. Here the linearized equation
of state

p̂/P = ρ̂/ρ + T̂ /T (3.7)

has been used, viscosity and thermal conductivity of the medium have been taken as
functions of temperature alone, the perturbations of these quantities are written as:

µ̂ =
dµ

dT
T̂ , κ̂ =

dκ

dT
T̂ .

In addition, J and I are interpolation arrays transferring data from the Gauss to
the Gauss–Lobatto and from the Gauss–Lobatto to the Gauss spectral collocation
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grids, respectively. To close the partial differential equation system (3.4a), boundary
conditions must be imposed on ∂D. At the solid wall, viscous boundary conditions are
imposed on all disturbance velocity components û = v̂ = ŵ = 0 and the temperature
perturbation is set to zero, T̂ = 0. There are no physical boundary condition for the
pressure disturbance. Two computational strategies are possible. Either all unknowns
are calculated at the same grid point (collocated grid) and, for the pressure, the
compatibility conditions must be imposed

∂p̂

∂x
=

1

Re
	2d û − U

∂û

∂x
− V

∂û

∂y
, (3.8a)

∂p̂

∂y
=

1

Re
	2d v̂ − U

∂v̂

∂x
− V

∂v̂

∂y
, (3.8b)

derived from the Navier–Stokes equations at the boundary of the domain. The other
strategy consists in using a staggered grid, in this case, the momentum and energy
equations are computed on the Chebychev Gauss–Lobatto points, while the equation
of continuity is computed on the Chebychev Gauss points. In this case, any boundary
condition is necessary for the pressure. Although, the two approaches give very
similar results, the second one converges better when the number of points increases.
In the following, only the second strategy is used. In the free stream, in the normal
direction, exponential decay of all disturbance quantities is expected, similar boundary
conditions to those imposed on the wall are imposed at a large distance (y = ymax) from
the wall. At inflow, homogeneous Dirichlet boundary conditions on all disturbances
are used; this choice corresponds to studying disturbances generated within the
examined basic flow field. At the outflow boundary, quadratic extrapolation of all
disturbance quantities from the interior of the integration domain is performed. This
computational strategy has been successfully used for the first time in a compressible
global eigenproblem by Theofilis & Colonius (2004) for a compressible open cavity
problem.

3.2. Basic flows

The availability of a two-dimensional basic state Q will be known analytically only
in exceptional model flows; in the large majority of cases of industrial interest, it
must be determined by numerical or experimental means. An accurate basic state is
a prerequisite for reliability of the instability results obtained; if numerical residuals
exist in the basic state (at O(1)) they will act as forcing terms in the O(ε) disturbance
equations and will result in erroneous instability predictions. In laminar flows,
current hardware capabilities permit the determination of a basic state using two-
dimensional DNS at arbitrary high resolution. Thereafter, the basic flow is obtained
by the resolution of the two-dimensional equations of motion. In the temporal
evolution of the residual, figure 7, the state B corresponds precisely to the two-
dimensional solution. This characteristic is independent of the initialization of the
three-dimensional simulation as long as this one is initialized by a two-dimensional
field. This characteristic is observed for θ < 33◦. Beyond that, the residual no longer
exhibits this behaviour and reaches the asymptotic state after a transient that is
different from the cases where θ < 33◦. Figure 10 shows the topology of the interaction
zone for θ = 32◦. The separated zone extends on Ls ≈ 1 and is only one piece (not
a secondary zone). After computing the basic flow solutions on the computational
domain using a high-resolution grid inaccessible to the instability analysis, a cubic
spline interpolation scheme is used to transpose the basic flow solution onto the
stability grid. The basic flow solutions are converged in time to within a tolerance
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Figure 10. Iso-lines of longitudinal velocity U (x, y) and streamlines. θ = 32◦, Re= 105.

tol ≡ |(gt0+	t −gt0 )/gt0 |< 10−10, where g is an integral measure of the flow or the value
of a local flow quantity.

3.3. Numerical approach

The stability equations (3.4) are solved on a domain identical to that used for the
basic flow computation: Ds = [0.2; 2.3] × [0; 0.94]. The choice of numerical method
for the biglobal eigenvalue problem is crucial for the success of the computation. In the
present biglobal analysis methodology, the amplitude functions of the small-amplitude
disturbances develop along two inhomogeneous spatial directions which must be
solved simultaneously. Consequently, the resolution requirements for an adequate
description of biglobal instabilities can be challenging; a thorough discussion of
this point, mainly focusing on incompressible flows, has been presented by Theofilis
(2003). Solving compressible BiGlobal analysis accurately requires more memory,
not only because of the need to solve the energy equation in addition to those
of incompressible flow, but also because increasing Mach numbers result in tighter
eigenmode structures to be resolved, compared with their incompressible counterparts.
Consequently, numerical methods of high-resolution capacity are essential in this
problem. In the present analysis, spectral collocation has been used, based on two
sets of Chebychev points for each direction x and y; the Chebychev Gauss–Lobatto
(CGL) points

ξj = cos

(
jπ

N

)
(j = 0, . . . , N), (3.9)

the extrema of the Nth-order Chebychev polynomials TN (ξ ) = cos(Ncos−1ξ ); and the
Chebyshev–Gauss (CG) points

ξj = cos

(
(2j + 1)π

2N

)
(j = 0, . . . , N − 1), (3.10)

the roots of the TN (ξ ), (N is nx or ny). A similar definition is used for the longitudinal
direction x where ξ is replaced by ζ . These two sets of points are introduced in view
of the different types of boundary condition pertaining to the stability problem as
was mentioned in § 3. Each sub-matrix Mj of the linear two-dimensional eigenvalue
problem (3.6) is defined either on the CGL or the CG points. First derivatives in
x and y on the CGL points are calculated using the collocation derivative matrix
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with ξj defined by (3.9) and c0 = cN = 2, ck = 1, for k ∈ [1, . . . , N −1]. First derivatives
in x and y on the CG points are calculated using
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with ξj defined by (3.10). Higher derivatives on either the CGL or the CG points
may be calculated using

Dik
(m) =

(
Dik

(1)
)m

. (3.13)

Contrary to an incompressible formulation, the matrix M3 is not equal to zero, the
global stability operator (3.6) has cross-derivatives, which are calculated by

∂2q̂
∂ξ∂ζ

(ζi, ξj ) =
∑

k

D
(x)
ik

[∑
l

D
(y)
j l q̂(ζk, ξl)

]
, (3.14)

where D(x) (resp. D(y)) is the first derivative in streamwise (resp. normal) direction.
Data may be transferred between the grids using the interpolation arrays I and J
introduced in (3.4) and previously used by Theofilis & Colonius (2004) for cavity
flow,

I = C−1
G CGL, (3.15a)

J = C−1
GLCG, (3.15b)

where, for (i = 0, . . . , N),

(CGL)ik =
2

cickN
cos

(
ikπ

N

)
, k = 0, . . . , N, (3.16a)

(CGL)−1
ki = cos

(
ikπ

N

)
, k = 0, . . . , N, (3.16b)

(CG)ik =
2

Nci

cos

[
i(k + 1

2 )π

N

]
, k = 0, . . . , N − 1, (3.16c)

(CG)−1
ki = cos

[
i(k + 1

2 )π

N

]
, k = 0, . . . , N − 1. (3.16d)

Because of the complexity of the basic flow (shock wave, separated boundary layer,
etc.), a single-domain algorithm cannot be used to describe accurately the entire
domain of this flow. In order to extend the biglobal stability analysis methodology
to complex geometries with a certain degree of regularity, the spectral multidomain
algorithm of Streett & Macaraeg (1989) is an obvious candidate.
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Figure 11. A typical grid, generated by (3.18) and (3.17), for BiGlobal instability analysis of
SWBLI at θ = 32◦, nx = 10 + 50 + 20, ny = 60.

In the normal y-direction, a mapping transformation for semi-infinite domains of
boundary-layer type is used

y =
a0(1 − ξ )

a1 + ξ
with a0 =

yaym

ym − 2ya

, a1 = 1 + 2
a0

ym

, (3.17)

ym is the upper boundary domain and ya (here ∼ 0.05) is the coordinate where
between [0; ya] there is 50 % of total points. In the streamwise x-direction, a spectral
multidomain is used

x ∈ [x0; xd], x = x0 +
(xa − x0)(xd − x0)(1 + ζ )

(xd + x0 − 2xa) (1 + 2(xa − x0)/(xd + x0 − 2xa) − ζ )
, xa ≈ 0.4,

(3.18a)

x ∈ [xd; xr ], x = xi + xd

tan
(

1
2
cπζ

)
tan

(
1
2
cπ

) , c = 0.9, (3.18b)

x ∈ [xr ; xn], x = xr +
(xb − xr )(xn − xr )(1 + ζ )

(xn + xr − 2xb) (1 + 2(xb − xr )/(xn + xr − 2xb) − ζ )
, xb ≈ 1.8.

(3.18c)

where xd , xi and xr correspond, respectively, to the separation, interaction and re-
attachment points of the basic flow. The grid used is shown in figure 11. At the
interface of the domains, continuity and derivability of the disturbances are imposed.

3.4. Eigenvalue problem

Using the tools presented, the compressible biglobal linear eigenvalue problem (3.4)
is transformed into a discrete matrix eigenvalue problem.

[M(Re, β) − ωN(Re, β)] Ẑ = 0, (3.19)

where Ẑ= {q̂ ij }. A standard eigenvalue subroutine may now be used to compute the
eigenvalues. Two methods were used to solve this algebraic system (3.19): a local
method based on a shooting method with a classical Newton–Raphson algorithm
and a global method, where the discretized operator spectrum is computed by the QZ
algorithm in the absence of prior information on interesting regions of the parameter
space. When the interesting zone of the spectrum is identified, a less expensive
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Figure 12. Discretized linear stability spectrum: (a) θ = 31◦, β = 8.02; (b) θ = 32◦, β =7.86.

algorithm, the Arnoldi algorithm, is used to compute only a part of the spectrum as
well as the associated eigenfunctions.

3.5. Biglobal results

The approach described in the preceding sections is employed to compute linear global
stability for various values of the incident shock wave angle from θ =31◦ to θ = 33◦.
Certain characteristics observed in the DNS are found. The critical shock angle beyond
which the flow becomes unstable is very close: θc = 31.8◦ for the stability analysis and
θc = 31.7◦ for the DNS. The eigenvalue spectra in the neighbourhood of ω = 0 and for
θ =31◦ and 32◦ are shown in figures 12(a) and 12(b), respectively. The calculation of
these spectra is carried out with (nx × ny) = (80 × 60) points. Stationary (Re(ω) = 0) as
well as travelling (Re(ω) �= 0) modes are to be found in this window of the spectrum,
calculated by the Arnoldi algorithm. The travelling modes appear in symmetric pairs,
indicating that there is no preferential direction in z. At this set of parameters (Re, M

and θ), the most unstable mode is a three-dimensional stationary perturbation. The
most unstable wavelength for example for θ =32◦ is equal to 0.7987, which is very close
to that observed in the DNS which is around 0.8. The evolution of the amplification
rate, Im(ω), according to the wavelength λ for various θ values is shown on figure 13
for the most unstable mode. With this most unstable wavelength, the amplification
rate is equal to Im(ω)bg = 3.85 × 10−4 which we must compare with the amplification
rate resulting from the DNS: Im(ω)dns = 3.719 × 10−4 (see figure 9). The agreement
is excellent. When the shock angle increases, a broader wavelength range becomes
unstable, mainly towards the high wavelengths. The very short wavelengths seem
always very strongly attenuated for all the studied values of θ . These characteristics
are compatible with those observed in the DNS where the small wavelengths are
always stable. With regard to the most unstable wavelength, λm = 2π/βm such as
Im[ω(βm)] = maxβ Im[ω(β)], it is slightly dependent on θ (increases with θ). If we
compare these results with those obtained in figure 3, some differences can nevertheless
be observed. The stability results indicate that beyond a critical wavelength λ(l)

c , for
example λ(l)

c (θ =32◦) ≈ 1.2, the flow is again stable. That does not seem to be the
case for the DNS. For the latter, when θ = 32◦, the basic flow becomes unstable when
λ� λ(1)

c which results in a three-dimensional and stationary asymptotic state. However,
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Figure 13. Temporal growth rate Im(ω) versus spanwise wavelength λ= 2π/β for various
incident shock angle θ . —, θ = 31◦; - - - , 32◦; –·–, 33◦.

θ = 31◦ θ = 31.8◦ θ = 32◦

(nx × ny) Im(ω) λ (nx × ny) Im(ω) λ (nx × ny) Im(ω) λ

60 × 50 −2.869(−3) 0.7793 60 × 50 +7.374(−6) 0.7918 60 × 50 +3.61(−4) 0.7954
70 × 50 −2.938(−3) 0.7817 70 × 50 +7.409(−6) 0.7932 70 × 50 +3.77(−4) 0.7969
80 × 50 −2.942(−3) 0.7832 80 × 50 +7.413(−6) 0.7951 80 × 50 +3.81(−4) 0.7981
80 × 60 −2.946(−3) 0.7834 80 × 60 +7.416(−6) 0.7956 80 × 60 +3.85(−4) 0.7987

Table 3. Convergence history of the most unstable eigenmode for various shock angles θ .
x(y) ≡ x × 10y .

when λ� λ(2)
c � 0.5, this three-dimensional steady flow itself becomes unstable, finally

reaching a three-dimensional and unsteady state. This difference is not understood at
present. The summary of the results obtained by the biglobal approach is given in
table 3. The real part of the eigenvector q̂(x, y)exp[i(βz−ωt)], at z =0.4, for the most
unstable mode is presented in figures 14 and 15. Most of the activity in all disturbance
eigenfunctions is confined within the boundary layer and to some degree in the vicinity
of the reflected shock. The upstream zone of SWTBLI is inactive in agreement with
DNS results. The neighbourhood of the basic laminar flow separation point is weakly
affected, as is clearly demonstrated by the level of activity of all disturbance velocity
components and pressure in that region. The peak of both the streamwise and the
wall-normal linear disturbance velocity components is to be found in the interaction
zone, x/Xsh ≈ 1, with higher-level linear activity continuing past the point of primary
reattachment for the streamwise component. ŵ (which is the only source of three-
dimensionality in this linear framework) is mostly distributed within the primary
separation bubble and has a tendency to split the latter into two regions of fluid
moving in opposite directions. It should be noted that there is strong activity in the
vicinity of the reflected shock wave for the normal component of fluctuating velocity.
Pressure also has interesting characteristics. There are two zones where the amplitude
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Figure 14. Normalized disturbance velocity components and pressure distribution of the
unstable stationary global mode in figure 12(b). Note the different y-scales in the different
eigenvector components (for the pressure).
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Figure 15. Normalized temperature disturbance of the unstable stationary global mode.

of the pressure fluctuation is high, in the vicinity of the reflected shock and the
interaction point between the incident shock and the boundary layer. However, these
two peaks are of opposite sign and represent a phase difference between the reflected
shock and the separated zone. The pressure fluctuation remains high downstream
from the interaction and well after the laminar basic flow has reattached. The main
activity in temperature disturbance remains confined within the interaction zone and
in the downstream boundary layer. Within the bubble, two peaks of opposite sign are
present. The eigenfunctions were normalized by the fluctuating streamwise velocity
component resulting from the numerical simulation at the point xd =(1, 0.04, 0.4).
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Figure 16. Evolution of the fluctuating quantities resulting from the numerical simulation in
the (x, y)-plan for t = 0.025 at z = 0.4.

In order to validate the relevance of these eigenfunctions, the fluctuating quantities
have been extracted from the direct numerical simulation. In order to obtain the
fluctuations of the various physical quantities from the instantaneous solution, this
instantaneous solution is selected in order to stay in the linear regime, i.e. when
| w(x, y, z, t) | is small compared to other characteristic velocities of the flow. In our
case, that corresponds to t = 0.025 at z =0.4. The fluctuating quantities are obtained
by the subtraction of the basic flow from this instantaneous solution. Figures 16
and 17 show the result obtained. The comparison with the disturbances resulting
from the stability approach (figures 14 and 15) shows some strong similarities, but
also some significant differences. In the two approaches, the streamwise and spanwise
velocity fluctuations are very similar qualitatively and quantitatively. The principal
difference in Re(ũ) is in the vicinity of the downstream recompression shock which
has a fluctuating activity in numerical simulation whereas no activity of the same
order is perceptible in the biglobal approach. As for the spanwise fluctuating velocity,
the disturbance decreases more slowly when y → ∞ in the numerical simulation
than in the biglobal approach. This characteristic is generally observed, to some
degree, on the whole of the fluctuating quantities. The normal component of the
velocity fluctuation resulting from the numerical simulation has almost twice the
amplitude of that resulting from the biglobal analysis. The most important difference
between the two approaches is localized in the interaction zone where the signs of
fluctuating velocity are rather dissimilar. This variation is not understood at present
and is observed from the instability onset. This characteristic is also observed for the
temperature disturbance. Between the two approaches, the pressure disturbance is very
similar. However, the amplitude of the fluctuating pressure in numerical simulation
is almost three times stronger near the reflected shock than in the stability analysis.



Bifurcations in shock-wave/laminar-boundary-layer interaction 107

0 0.4 0.8 1.2 1.6 2.0

0. 1

0. 2 T
f

0.0210
0.0192
0.0175
0.0143
0.0107
0.0062
0.0033
0.0005

–0.0016
–0.0052
–0.0108
–0.0133y

Xsh

x/Xsh

Figure 17. Temperature disturbance Tf .

Elsewhere, the amplitude remains comparable. This difference can undoubtedly be
explained by the lack of points in the stability grid around the shock waves.

4. Discussion and prospects
The main objective of this paper was to highlight that an interaction between an

oblique shock wave impacting on a laminar boundary layer developing on a flat plate
could be the generating seat of a global instability of low-frequency self-sustained
oscillations. Therefore, three-dimensional direct numerical simulations were carried
out for a configuration close to that of Degrez et al. (1987) where the incident shock
angle is gradually increased.

These numerical simulations highlighted a complex process in the onset of unsteady
dynamics when the angle of the incident shock increases. These numerical computa-
tions have shown that before becoming unsteady, the SWBLI goes through a phase
where the flow becomes three-dimensional and stationary (for θ > 31.7◦). However,
this state is unstable and can lead to a fully three-dimensional and unsteady flow.
The final state is reached more quickly when the angle of the incident shock is large.

When the spanwise dimension Lz is large enough, the main spanwise wavelength of
the disturbance is close to λz = 0.8. In the interaction, the topology of the separated
zone is complex and mainly characterized by cells in the spanwise direction where the
flow is alternatively separated and reattached. Within this separated zone, a vortex
waterspout which connects the flow from the wall to the downstream shear layer of
the interaction is observed (figure 8c). This topologically complex zone exhibits an
unsteady self-sustained low-frequency dynamics close to 700 Hz.

Linearized global stability analysis was carried out in order to find the physical
origin of the bifurcation generating the three-dimensional character of the flow. This
analysis highlighted that beyond a critical angle of the incident shock wave, the
flow becomes linearly globally unstable, a stationary three-dimensional mode with
characteristics very close to those highlighted in the direct numerical simulation has
been observed. The wavelength, the temporal amplification rate and the main space
characteristics of the disturbance are found.

However, in a boundary layer there exist starting from a critical Reynolds number,
which depends on the local characteristics of the boundary layer, unstable waves
which destabilize the flow and involve its transition towards turbulence. These local
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instabilities are more intense when the boundary layer is separated and/or when a
shock wave interacts with this boundary layer.

The existence of upstream disturbances related to mechanisms of instability involved
in the transition process have a great influence on the unsteady dynamics of the
interaction. It would be interesting to verify whether the results presented in this
paper remain unchanged if convective unstable disturbances develop from upstream
of the interaction. The main difficulty is to extract both Kelvin–Helmholtz instabilities
and global dynamics which are characterized by very different temporal and spatial
length scales (tKH ∼ 5 × 10−5 s and λKH ∼ δ (δ is the boundary-layer scale), tG ∼ 10−3 s
and λG ∼ Li , where Li = xr − xd is the interaction length). In this case, it would be
interesting to study the possible interactions between these two types of local and
global instability.

The case of an interaction between a shock wave and a turbulent boundary layer
(SWTBLI) represents a configuration closer to the industrial cases. In some configura-
tions SWTBLI can be the seat of low-frequency unsteadiness. A study of global
stability similar to that carried out in the laminar case would permit us to understand
better the various mechanisms present in a turbulent configuration. Moreover, many
experiments on SWTBLI on a flat plate carried out by the supersonic group at
IUSTI/CNRS (Dupont et al. 2003, 2005; Haddad et al. 2004; Dussauge, Dupont &
Debiève 2006), would enable us to validate such an approach in a more realistic
configuration.

Computing time was provided by Institut du Développement et des Ressources en
Informatique Scientifique (IDRIS)-CNRS.
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